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We developed an anatomically accurate detailed head-neck FE model from magnetic resonance 

imaging (MRI) of soft (muscles, ligaments, brain, etc.) and hard tissues (skull, bones, etc.) of the head-neck 

system of a male participant (age: 42 years, height: 176 cm, and weight: 235 lbs) using Texas Tech 

University Neuroimaging Center’s 3T MRI scanner [1]. By using MRI modality only, we avoided two image 

processing challenges: 1) hard (traditionally imaged by using CT scan) and soft (imaged by using MRI scan) 

tissue coregistration difficulties [2-5], and 2) exposing human subjects to the inherent radiation of the CT 

scanner [6-8]. Using commercial Mimics 24 and 3-matic software platform (Materialise Inc., USA), we 

segmented the MRI images and generated high-quality anatomical features of scalp, skull, brain, pia matter, 

dura matter, cerebrospinal fluid (CSF), cervical bones (C1-C7), and intervertebral. To ensure the accuracy 

of the articulation and integrity of the vertebral morphology, we performed principal component analysis in 

MATLAB R2021b program to determine both alignment and orientation of each neck segment. We 

compared and validated both articulation and morphological data (translational and rotational orientation, 

height, depth, etc.) of each vertebral bone and intervertebral disc with the literature [9]. To explore the 

contribution of neck muscles to mechanical loads, we added following neck muscles to the model: Obliquus 

capitis superior, Superior Longus colli, Rectus capitus major, Rectus capitus minor, Longus capitis, Rectus 

capitis ant, Rectus capitis lat, Anterior Scalene, Middle scalene, Posterior scalene, Sternocleidomastoid, 

Longissimus capitis, Longissimus Cervicis, Multifidus cervicis, Semisplenius capitus, Semispinalis cervicis, 

Splenius capitis, Splenius cervicis, Levator scapula, Oblique capitus inferior and Trapezius. The origin, 

insertion, and muscle path information were taken from the literature [10]. We also added following neck 

ligaments as they provide stability to the head and neck complex: anterior longitudinal ligament (ALL), 

posterior longitudinal ligament (PLL), ligamentum flavum (LF), capsular ligament (CL), interspinous 

ligaments (ISL), tectorial membrane, anterior and posterior atlanto-occipital ligaments, anterior and 

posterior atlanto-axial ligaments, Apical ligament, alars ligament, transverse ligament, and Cruciate 

Ligament of Atlas.  

Table 1: Material properties of solid elements of the model 

Due to inherent complexity and 

irregularities of individual segments, 

a high-quality mesh was generated 

to mesh the head-neck geometry. 

To maintain the quality of the mesh 

structure, we used 3, 45, 10, and 0.7 

as threshold values for aspect ratio, 

skewness, warping and max angle, 

respectively. The resulted mesh structures included 1.9 million tetrahedral elements, in which scalp, skull, 

CSF, brain, vertebrae and intervertebral discs have 0.27, 0.47, 0.33, 0.68, 0.07 million elements, 

respectively. On the contrary, pia and dura matters were meshed using 81 thousand triangular (shell) 

elements. Previous biomechanical studies have used a wide range of material properties, ranging from 

linear elastic to complex non-linear properties, to describe the mechanical response of individual head and 

neck components [11-21]. We modeled scalp, skull, pia mater, dura mater, intervertebral discs, and 

vertebrae as linear elastic material and the CSF as solid elements with fluid-like behavior (elastic fluid) [11, 

14]. Brain tissue has a very complicated and nonlinear mechanical behavior [22]. So, we modeled the brain 

as an isotropic homogeneous viscoelastic material [23]. Density, bulk modulus, decay constant, and short-

term shear modulus and of the brain were respectively set to 1.06e-9 ton/mm3, 1.125 GPa, 4.9e-8 GPa, 

145, and 1.67e-8 GPa [23]. The material properties of other head-neck structures are provided in Table 1. 

We used a Hill type muscle model to define both active and passive mechanical behavior of the muscles 

[24]. Muscle volume and physiological cross section area (PCSA) were taken from the literature [18]. 

Material Type Density 
[ton/mm3] 

Young 
modulus 

[GPa] 

Poisson 
Ratio 

Bulk 
Modulus 

[GPa] 

Bone [11] Linear elastic 1.2E-9 15.0000 0.22 - 

Skin [12] Linear elastic 1.0E-9 0.01670 0.42 - 

Discs [13] Linear elastic 1.2E-9 0.00480 0.22 - 

CSF [14] Elastic fluid 1.0E-9 0.00131 0.49999 2.1900 

Pia mater [12] Linear elastic 1.0E-9 0.00230 0.45 - 

Dura mater [12] Linear elastic 1.0E-9 0.00500 0.45 - 
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Muscle resting length was calculated as muscle volume divided by the PCSA and the maximum velocity of 

contracting element was set to 10 times the resting length of a given muscle [24]. Maximum pressure of the 

muscle was set to 0.3 MPa [24]. We employed tied contact to simulate the coupling between discs and 

vertebrae, skull and scalp, brain and CSF, Skull and dura mater, brain and pia mater and neck-skull 

articulations. We fixed the bottom of the C7 cervical vertebrae wherein all its degrees of freedom were 

restricted. 

  

 

  

    

Fig. 1: Our MRI-derived detailed head-neck FE model (top left), preliminary impact tests (top middle and top left), 
and results (bottom figures). Bottom figures show the von Mises stress contour in the brain for various head-neck 
modeling scenarios (from left to right); head model, head-neck model, head-neck model with 25% muscle activations,  
and head-neck model with 50% activation in flexor muscles and 25% muscle activations in extensor muscles.   
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